放电电压平稳 IC693CMM301RR GE模块










放电电压平稳 IC693CMM301RR GE模块
IC200NDD010 | IC200CHS014 | IC693CBL327 |
IC200UDD212 | IC200UDD020 | IC693MDL260 |
IC200PNS002 | IC200NDD101 | IC693CBL311 |
IC200CHS102 | IC200CHS011 | IC693CBL303 |
IC200CHS101 | IC200CHS122 | IC693CBL313 |
IC200UDD220 | IC200MDL743 | IC693NIU004 |
IC200UDR120 | IC200MDL750 | IC693CBK004 |
IC200CPU005 | IC200CBL655 | IC693MCD001 |
IC200UDD240 | IC200CHS001 | IC693MDL241 |
IC200CHS112 | IC200CBL602 | IC693PBS201 |
IC200CHS022 | IC200CHS015 | IC693CBL301 |
IC200PKG104 | IC200CBL635 | IC693CBK002 |
IC200NDR010 | IC200CBL615 | IC693CBK001 |
IC200UDD104 | IC200UAL006 | IC693MDL330 |
IC200NAL110 | IC200MDL742 | IC693PBM200 |
IC200PNS001 | IC200UDD040 | IC695RMX128 |
IC200NAL211 | IC200MDL740 | IC695CPU320 |
IC200NDR001 | IC200CHS002 | IC695CMX128 |
IC200MDL930 | IC200CBL555 | IC695ACC415 |
IC200CHS025 | IC200CBL605 | IC695ACC414 |
IC200CHS005 | IC200UDD110 | IC695ACC413 |
IC200CHS006 | IC200MDL730 | IC695CPK400 |
IC200CHS003 | IC200CBL600 | IC695EDS001 |
IC200CHS111 | IC200CBL510 | IC695ACC412 |
IC200MDL940 | IC200CBL545 | IC695CPE302 |
IC200CPU002 | IC200CBL550 | IC695CDEM006 |
IC200UDD112 | IC200UAR028 | IC695CPL410 |
IC200UDD120 | IC200CBL525 | IC695PNS101 |
IC200DEM103 | IC200MDL741 | IC695ALG626 |
IC200UDD064 | IC200UAL005 | IC695ALG608 |
放电电压平稳 IC693CMM301RR GE模块
一、深度学习在工业领域落地的痛点
人工智能自诞生以来,经历了早期的专家系统、机器学习,到当前持续火热的深度学习和大模型等多次技术变革和规模化商用。随着算力、算法和软件平台的快速进步和不断成熟,工业逐渐成为了深度学习技术的重点探索方向,工业AI智能技术应用而生。
基于深度学习的工业缺陷检测方法可以降低传统人工质检的成本,提升检测的准确性与效率,因而在智能制造中扮演重要角色。传统的机器学习和深度学习技术都依赖大量的标注数据,并在监督下训练出表现优异以及具备一定泛化能力的模型。但随着感知环境和应用场景的变化,模型的训练会存在以下问题:
(1)缺陷样本匮乏,生产过程中缺陷数据的数量和种类较少,数据不均衡,无法穷举生产过程中缺陷的种类和形态。
(2)数据的标注和清洗周期长,需要耗费大量的人力和物力。
(3)训练好的模型性能会大幅度下降,重新训练周期成本高。
(4)多模态数据的跨域学习和特征级数据融合。
上述问题都成为工业AI落地的障碍,如何解决数据标注效率、跨域学习、以及数据管理等问题,训练更具泛化性、鲁棒性和场景适应性的模型成为学术界和工业界面临的共同课题。
二、前沿技术探索和进展
对于一些传统方法无法有效解决的场景,如微小缺陷和瑕疵的检测、非结构化环境下的物体分拣等,可以归类为“少因素高复杂度”的问题,是深度学习发挥重要作用的领域,目前也是工业AI落地应用较多的场景,而随着场景机理的计算复杂度提升,深度学习可以发挥更大的作用。为了提升深度学习在工业领域的落地效率,降低项目实施和部署的周期,华汉伟业主要从以下几个方面进行技术探索和实践:
(1)缺陷数据生成:利用人工智能技术自动完成缺陷仿真数据的生成,基于AIGC技术建立现实世界到数字世界的映射关系,将现实世界中工件的物理属性(如物体的大小、纹理、颜色等)高效、可感知的实现数字化,可以基于少量样本实现多种属性样本的生成,从而解决缺陷样本匮乏的问题。
(2)数据管理:生产过程中,有多条产线、多个工位的数据需要进行管理,需要人工进行数据的管控,缺乏数据的管理系统,方便后续的继承和持续训练。华汉伟业通过数字化技术,实现多工位、多场景的数据系统化管控,降低人为因素对数据管控的影响。
(3)数据标注:当前监督学习仍为工业AI落地的技术方向,为了提升标注效率,降低标注的时间消耗,华汉伟业从交互式标注入手,提升标注效率,并且提供了多种选择,如基于二值化的标注、基于特征分割的标注、基于大模型的标注,满足多样化的标注需求。
(4)多模态数据融合:工业生产过产中,很多缺陷无法从某一特定角度或者单一传感器全部拍摄出来,需要多角度光源照射、多传感器协同拍摄,实现多种瑕疵缺陷的可视化。为了提升多角度、多姿态图像特征级别的融合,提升缺陷检测准确率,华汉伟业从多模态特征融合、基于图像数据流的特征融合等多方面进行技术探索,提升模型的泛化性能。
(5)降低样本数据依赖性:为了降低训练过程中对于样本的依赖,提升模型在不同产线和不同场景的适应能力,华汉伟业从小样本学习、迁移学习和异常检测,降低对缺陷样本数量的要求。
三、产品和解决方案
华汉伟业研发的人工智能检测系统iSense,实现在新能源、3C电子制造、汽车电子等领域的落地实践。系统涵盖图像采集、数据管理和结果输出等功能,整体软件架构如图1所示。

图 1 iSense软件架构
针对工业制造场景的特殊属性,沉淀了高精度算法模型,可满足行业普遍的算法需求。iSense 提供了丰富产品功能,如旋转目标检测、对比学习、异常检测、多图像分割等特色化解决方案,助力检测模型快速迭代。

图 2 iSense产品功能特性
iSense AI视觉检测平台主打“1个iSense平台+N种模态+适配X应用场景”的亮点特质;打造N种模态,涵盖:2D+AI、2.5+AI、3D+AI、2D+2.5D+3D+AI......等N种模态组合。
该系统针对底层算法全新升级,深度客制化成像系统实时把控,从环境、设备、产品端全流程细节调整,一键跨区域迁移学习,节省训练时间,多种数据增强功能,满足不同场景数据及迁移应用能力。

图 3 iSense产品亮点
iSense具备持续学习、带噪学习、自动样本生成等优势,提升工业AI落地的效率。
图4 iSense产品核心技术优势
除了降本增效外,iSense视觉检测更高维的价值在于打通生产各环节的数据链,帮助制造商企业实现连续化生产过程中缺陷数据的可追溯,软件可对数据做挖掘、处理和分析,实现工艺流程和产品品质的改造升级。
图5 iSense产品E2E快速部署
iSense产品界面,如图6所示。

图6 iSense系统产品界面
放电电压平稳 IC693CMM301RR GE模块
联系方式
- 地址:厦门 厦门市集美区杏林湾路482号602室
- 邮编:361022
- 电话:0592-6372630
- 销售经理:兰顺长
- 手机:18030129916
- 微信:18030129916
- QQ:3001627136
- Email:3001627136@qq.com

