GE通用电气 IC200ACC405 以太网模块










GE通用电气 IC200ACC405 以太网模块
IC200MDL743
IC200MDL750
IC200CBL655
IC200CHS001
IC200CBL602
IC200CHS015
IC200CBL635
IC200CBL615
IC200UAL006
IC200MDL742
IC200UDD040
IC200MDL740
IC200CHS002
IC200CBL555
IC200CBL605
IC200UDD110
IC200MDL730
IC200CBL600
IC200CBL510
IC200CBL545
IC200CBL550
IC200UAR028
IC200CBL525
IC200MDL741
IC200UAL005
IC200CBL520
IC200MDL650
IC200UAA007
IC200MDL643
IC200CBL601
IC200CBL500
IC200CHS012
IC200CBL230
IC200CBL501
IC200CBL120
IC200UAL004
IC200UAA003
IC200MDL636
IC200MDL331
IC200CBL002
IC200TBX520
IC200CBL105
IC200BEM103
IC200CBL110
IC200CBL001
IC200TBX440
IC200UAR014
IC200MDL632
IC200MDL329
IC200MDL244
IC200BEM003
IC200MDL635
IC200MDL243
IC200MDL330
IC200ALG432
IC200TBX364
IC200MDL241
IC200TBX464
IC200TBX223
IC200BEM002
IC200ALG630
IC200TBX264
IC200UDR020
IC200BEM104
IC200TBX240
IC200MDL240
IC200TBX540
IC200TBX214
IC200MDL640
IC200ALG431
IC200ALG430
IC200TBX228
IC200TBX420
IC200TBX340
IC200ALG620
IC200ALG325
IC200MDL144
IC200ALG328
IC200TBX320
IC200MDL143
IC200ALG326
IC200MDL141
IC200TBX164
IC200MDL744
IC200TBX140
IC200TBX123
IC200MDL140
IC200MDD849
IC200PWR001
IC200TBX210
IC200MDD850
IC200UEX064
IC200UEX015
IC200MDD848
IC200UEX014
IC200ALG331
IC200ALG266
IC200TBX110
IC200ALG320
IC200TBX028
IC200TBX128
IC200TBX064
IC200MDD847
IC200MDD845
IC200TBX220
IC200MDL631
1756-A10
1756-A13
1756-A17
1756-A4
1756-A7
1756-BA1
1756-BA2
1756-BATA
1756-BATM
1756-CFM
1756-CN2
1756-CN2R
1756-CNB
1756-CNBR
1756-CP3
1756-CPR2
1756-DH485
1756-DHRIO
1756-DNB
1756-EN2F
1756-EN2T
1756-ENBT
1756-EWEB
1756-HSC
1756-HYD02
1756-IA16
1756-IA16I
1756-IA32
1756-IA8D
1756-IB16
1756-IB16D
1756-IB16I
1756-IB32
1756-IC16
1756-IF16
1756-IF16H
1756-IF6I
1756-IF8
1756-IF8H
1756-IG16
1756-IH16I
1756-IM16I
1756-IR6I
1756-IT6I
1756-L71
1756-OF8
1756-EN2TR
1756-L72
1734-OB8
1734-IB8
1734-OB8S
为了适应数字化生产条件下的机匣加工工艺需求,需要利用数字化手段,总结、集成并整合各种类型、各种特征的加工经验,形成可直接调用的机匣加工工艺知识库,通过数字化的手段确保机匣加工工艺的稳定性、成熟性和可靠性。
1.3 机匣零件三维数字化工艺技术需求
针对机匣产品的特点以及工艺设计现状,现有模式存在以下4点需求。
(1)更好地继承和利用机匣的三维设计模型。虽然工艺人员能够接收设计人员建立的机匣零件三维模型,但模型及模型上的PMI 标注信息却不能为工艺系统直接使用,如果仅仅作为查看,而不能辅助工艺人员进行工艺分析和决策,模型及标注本身的价值则大大降低。
(2)更好地利用企业已积累的大量机匣零件工艺知识和经验。企业制订有各种规范和标准,但是这些知识、经验、规范和标准均独立在系统之外,工艺人员需要去查找、挑选。使用符合要求的规范和标准也对工艺人员的设计经验和知识提出要求。即使找到合适的资料,工艺人员还需要复制粘贴到工艺系统中才能复用。缺乏知识的积累和复用体系来保证,企业的工艺知识又非常容易流失,导致某些设计质量问题在生产过程中反复出现,引起质量波动。
(3)实现机匣零件三维工序模型快速构建。目前的设计模式下,需要工艺人员利用3D CAD 建立机匣零件的每道工序的三维工序模型,再将工序模型投影成工艺简图,不仅大幅度增加了工艺人员的工作量,而且也使得工艺人员无法将关注力集中在工艺本身。而当模型发生变化时,或者工艺需要调整时,重建工序模型也使得工艺更改的工作量增加。
(4)实现机匣零件工艺三维可视化呈现。企业目前采用工艺卡片的呈现形式,文字加简图的表达方式缺乏加工过程的直观、可视的表达。
2 机匣产品三维工艺研究
2.1 机匣产品三维数字化工艺设计流程
三维数字化工艺设计首先利用特征提取和识别技术分析零件MBD 模型,得到以特征为单位的几何、工艺信息。然后,通过工艺推理和决策模块获得所提取特征,识别加工需要的设备和工艺参数信息。在此基础上,通过人机交互编排工艺过程确定每道工序加工内容,再构建零件毛坯模型,然后基于每道工序加工内容正向从毛坯到零件自动创建每道工序的三维工序模型,*后推理每道工序的设备及刀具等加工参数,从而形成零件的加工工艺过程。数字化工艺设计软件技术路线如图1所示。

图1 三维数字化工艺设计技术路线
联系方式
- 地址:厦门 厦门市集美区杏林湾路482号602室
- 邮编:361022
- 电话:0592-6372630
- 销售经理:兰顺长
- 手机:18030129916
- 微信:18030129916
- QQ:3001627136
- Email:3001627136@qq.com

